
Algorithms Introduction & Sorting Page 1 of 6

Introduction

An algorithm is a set of instructions that perform a particular task (or problem), they are
at the heart of Computer Science. As a concept, algorithms have existed long before
computers, particularly in mathematics, but also in our day-to-day lives. You can actually
consider much of what we do on a daily basis (such as making breakfast, or travelling to
school) as algorithms.

For example, this is an algorithm:

Make Toast

1
2
3
4
5
6
7
8
9

Get bread from cupboard, and open packet.
Put 2 slices of bread in toaster.
Turn on the toaster by pressing down on the leaver.
Put bread away in the cupboard.
Get out a plate, a knife and the butter.
Wait for the toast to pop up.
Put toast on plate.
Use knife to put butter on toast.
Enjoy.

We design write algorithms specifically for use on a computer, and then convert the
algorithm into computer code by using a particular programming language, e.g. Python,
Java, Ruby, Pascal, Haskell, JavaScript etc… Algorithms that we design for computers need
to follow a specific structure to make it easy to convert directly into a programming
language.

Pseudocode

Pseudocode is a way to write algorithms using natural language (like english) by
describing steps precisely, and usually looks quite similar to a lot of real programming
languages.

For example this is pseudocode for an algorithm that finds the largest of two numbers:

max(x:number, y:number) → number

1
2
3
4

IF x > y THEN
 RETURN x
OTHERWISE
 RETURN y

http://samlanning.github.io/teaching-resources/

Algorithms Introduction & Sorting Page 2 of 6

You can see that there are some similarities between pseudocode and python, including:
• We put line numbers at the side.
• We can use similar keywords (which keywords we use in pseudocode don't really

matter as long as they are in english and make sense).
• We use indentation (space at the start of a line).

There are many different styles of pseudocode, and all of them are valid, for example
you don't need to use capital letters, or make things bold etc...

Here's what the above algorithm would look like in python:

1
2
3
4
5

def max(x, y):
 if x > y:
 return x
 else:
 return y

You will have noticed in our pseudocode example above, that we also had this extra bit
at the top:

max(x:number, y:number) → number

This is called the type signature of the algorithm, and details the inputs that the
algorithm accepts, and the type of the thing it will output (if it has an output). If an
algorithm has a type signature, then we can think of it as a function, like in any
programming language.

In this case, the algorithm inputs two values, both of which are numbers, and called them
x and y. It also outputs a number. Look at the similarities between this and the first line
of our python version.

http://samlanning.github.io/teaching-resources/

Algorithms Introduction & Sorting Page 3 of 6

Sorting Algorithms

Quite often when designing algorithms and writing software, we find that we want to sort
lists of items into some kind of order (for example, we may have a list of words we want
in alphabetical order, or a list of numbers we want in ascending (increasing) order).

For now, we'll just focus on putting lists of numbers in ascending order.

Bubble Sort

Bubble sort is a simple sorting algorithm that works like so:

• Go along the list comparing each pair of consecutive numbers (numbers that are
next to each other in the list).

• If the second number is smaller than the first, swap them.
• Do this sweep for the whole length of the list, then again but ignoring the last

number, and again but ignoring the last 2 numbers, then ignoring the last 3
numbers etc…

• When you reach a point where you are ignoring all numbers, the list will be sorted.

Take for example this list [6, 4, 7, 5], bubble sort would work like this:
Note: “comp” mean comparison.

Sweep 1:

3 comparisons, and 2 swaps.

http://samlanning.github.io/teaching-resources/

6 4 7 5
comp

4 6 7 5
swap

4 6 7 5
comp

4 6 7 5
comp

4 6 5 7
swap

Algorithms Introduction & Sorting Page 4 of 6

Sweep 2:

2 comparisons, 1 swap.

Sweep 3:

1 comparison, 0 swaps.

You can see that 1 sweep is not enough, because the numbers 5 and 6 need to be
swapped to make the list ordered.

Here is pseudocode for bubble sort: (Remember: indexes start at zero)
Note: array is a special kind of list

bubble_sort(arr:array of numbers) → nothing

1
2
3
4
5
6

SET n = length of arr
WHILE n > 1 DO
 FOR i IN [0, 1, … , n-3, n-2] DO
 IF arr[i] > arr[i+1] THEN
 swap arr[i] and arr[i+1]
 SET n = n - 1

Questions

1.1:
Draw and run through the steps of bubble sort, like above, for the list [4, 5, 7, 6]

1.2:
Draw and run through the steps of bubble sort for the following lists, and count the number of
comparisons and swaps done in each case:

(a) [3, 2, 1]
(b) [2, 7, 1, 6, 4]
(c) [4, 6, 6, 18, 20]

http://samlanning.github.io/teaching-resources/

4 6 5 7
comp

4 6 5 7
comp

4 5 6 7
swap

4 6 5 7
comp

Algorithms Introduction & Sorting Page 5 of 6

1.3:
Find and write down an order for the list with numbers 4,5,6,7 so that running bubble sort on it will result
in no swaps being made.

1.4:
Find and write down a general rule that any list has to follow so that bubble sort never makes any swaps
when run on it.

1.5:
Find and write down an order for the list with numbers 4,5,6,7 so that running bubble sort on it will result
in a swap after every comparison.

1.6:
Find and write down a general rule that any list has to follow so that bubble sort always makes a swap
after every comparison when run on it.

1.7:
Write down python code (on paper) for the bubble sort algorithm, using the pseudocode as a starting
point. The function definition should look like: def bubble_sort(arr):

Remember: the python function range(n): makes a list like [0, 1, …, n-1]

Selection Sort

Selection sort is another basic sorting algorithm, and it works like this:

• find the maximum number in the list
• swap that number with the last element in the list
• find the maximum number in the list, ignoring the last element
• swap that number with the second last element in the list
• find the maximum number in the list, ignoring the last two
• etc…

For example on the list [6, 4, 7, 5], it would work like this:

http://samlanning.github.io/teaching-resources/

6 4 7 5
find max

6 4 5 7
swap

6 4 5 7
max

5 4 6 7
swap

Algorithms Introduction & Sorting Page 6 of 6

Here is the pseudo code for selection sort:

selection_sort(arr:array of numbers) → nothing

1
2
3
4
5
6
7
8
9
10

SET n = length of arr
WHILE n > 1 DO
 SET max = arr[0]
 SET max_i = 0
 FOR i IN [1, 2, … , n-3, n-1] DO
 IF arr[i] > max THEN
 SET max = arr[i]
 SET max_i = i
 swap arr[max_i] and arr[n-1]
 SET n = n - 1

Questions

2.1:
Draw and run through the steps of selection sort, like above, for the list [5, 4, 7, 6]

2.2:
What is the pseudocode on lines 3-8 doing?

2.3:
Write down python code (on paper) for the selection sort algorithm, using the pseudocode as a starting
point. The function definition should look like: def selection_sort(arr):

Remember: the python function range(n): makes a list like [0, 1, …, n-1]

http://samlanning.github.io/teaching-resources/

5 4 6 7
max

4 5 6 7
swap

